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Summary

We used human DNA microarray to explore the differential gene expression profiling of atrial natriuretic
peptide (ANP)-stimulated renal tubular epithelial kidney cells (LLC-PK1) in order to understand the bio-
logical effect of ANP on renal kidney cell�s response. Gene expression profiling revealed 807 differentially
expressed genes, consisting of 483 up-regulated and 324 down-regulated genes. The bioinformatics tool was
used to gain a better understanding of differentially expressed genes in porcine genome homologous with
human genome and to search the gene ontology and category classification, such as cellular component,
molecular function and biological process. Four up-regulated genes of ATP1B1, H3F3A, ITGB1 and RHO
that were typically validated by real-time quantitative PCR (RT-qPCR) analysis serve important roles in the
alleviation of renal hypertrophy as well as other related effects. Therefore, the human array can be used for
gene expression analysis in pig kidney cells and we believe that our findings of differentially expressed genes
served as genetic markers and biological functions can lead to a better understanding of ANP action on the
renal protective system and may be used for further therapeutic application.

Introduction

Atrial natriuretic peptide (ANP) is a member of
the natriuretic peptide family that consists of 28
amino acid residues. It is synthesized, stored, and
released by atrial myocytes of the heart in response
to atrial distension, as well as to stimulation by
angiotensin II, endothelin, and the sympathetic

nervous system. It is also synthesized in a variety
of other tissues, including the kidneys [1, 2]. The
roles of ANP in the kidney include increasing
glomerular filtration rate, inhibiting renal tubular
reabsorption of sodium and chloride, as well as
redistributing blood flow to the renal outer me-
dullar region which can be of beneficial value in
the treatment of acute renal failure [3, 4]. In
addition, it has been found that the mechanical
actions of ANP are mediated by the A-type
natriuretic peptide receptor (NPR-A), a single
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transmembrane sequence receptor linked to gua-
nylate cyclase (GCase). Subsequently, the activa-
tion of guanylate cyclase generates cGMP from
GTP, in which cGMP is the common mediator of
vascular relaxation. This contributes to negative
inotropic and chronotropic effects in the kidney, as
well as natriuresis and inhibition of water and salt
intake [5–8]. Moreover, ANP has some biological
activities on LLC-PK1 renal tubular kidney cells.
These activities can include the attenuation of
ANG II-induced hypertrophy of renal tubular cells
[9], the induction of a significant increase in cyclic
GMP (cGMP) formation in LLC-PK1 cells [10],
and the reduction of cyclosporine toxicity in renal
tubular cells [11]. However, the whole gene expres-
sion profiling of ANP-stimulated LLC-PK1 cells
and their differential gene functions have yet to be
reported. Although some renal actions of ANP in
renal tubular kidney cells have been elucidated, the
effects of ANP on the gene expression profiling of
renal tubular cells, including gene functions, signal
transduction pathways, and mechanism of renal
hypertrophy have not been clearly understood.

To study the biological effect of ANP on gene
expression profile of the cellular response of
kidney cells, namely renal tubular epithelial cells
(LLC-PK1), we used the high throughput tech-
nique of DNA microarray and bioinformatics
tools to explore the differentially expressed genes
and to search the gene ontology that provided the
categorical classifications of cellular component,
molecular function and biological process. Inter-
estingly, the biological functions of four differen-
tially expressed genes involved in the alleviation of
renal failure progression and some related effects.
Moreover, we also proposed the hypothetical
pathway of ANP signal transduction in LLC-
PK1 cell�s response. We believe that our finding of
differentially expressed genes in response to ANP
stimulation and the regulation of genes in renal
system may become useful information for diag-
nostic and therapeutic applications.

Materials and methods

Materials

LLC-PK1 cells (ATCC CL101, Sus scrofa, pig
renal tubular epithelial kidney cells) were obtained
from ATCC (Rockville, MD, USA). Medium 199

was obtained from HyClone (Logan, UT, USA).
D-PBS and Trypsin-EDTA were purchased from
ATLANTA biologicals (Norcross, GA, USA).
Fetal bovine serum, antibiotic-antimycotic, and
TRIzol reagent were purchased from Invitrogen
(Carlsbad, CA, USA). ANP and sodium bicar-
bonate were purchased from Sigma (St. Louis,
MO, USA). RNeasy Mini Kit was purchased from
Qiagen (Valencia, CA, USA), and cyanine 3- and
5-labeled CTP (10.0 mM) were purchased from
Perkin-Elemer/NEN Life Science (Boston, MA,
USA). The RNA 6000 Nano LabChip Kit, Low
RNA Input Fluorescent Linear Amplification Kit,
Human 1A Oligo Microarray Kit (V2), in situ
Hybridization Kit Plus, and the Stabilization and
Drying Solution were purchased from Agilent
Technologies (Palo Alto, CA, USA). All other
chemicals were purchased from Sigma (St. Louis,
MO, USA).

Cell culture

LLC-PK1 cells were cultured in Medium 199
supplemented with 1.5 g/l sodium bicarbonate,
3% fetal bovine serum, and 1% antibiotic-antimy-
cotic in a humidified incubator with 5% CO2 and
95% air at 37 �C [9–11]. Upon confluence, the cells
were detached by treatment with 0.05% trypsin
and 0.53 mM EDTA. During subculture, the
medium was replaced every 2–3 days.

ANP treatment

To perform cell attachment, the cells were seeded
at 2� 106 cells in a 10 cm tissue culture dish
(NUNCTM, Roskilde, Denmark) for 24 h. The
cells were then washed with PBS and were treated
with vehicle (D-PBS, 0.01%) and ANP (10)7 mol/
l) for 24 h [10]. The number of independent paired
samples of cultured cells that were treated with
ANP either present or absent was done in tripli-
cate for each paired sample.

RNA preparation and quantitative measurement

RNA was extracted by a modified method using
TRIzol combined with RNeasy Mini Kit. Briefly,
the total RNA was extracted with 1 ml of TRIzol
reagent per 1� 106 cells or 10 cm cell culture dish
following the manufacturer�s instructions. The



TRIzol samples were added with 0.2 ml of chlo-
roform, vigorously shaken for 15 s, and incubated
for 2–3 min at 15–30 �C. The aqueous phase was
separated by centrifugation at 12,000 � g for
15 min at 2–8 �C. The supernatant was used as the
input material for the RNeasy Mini Kit, and
the total RNA was isolated as indicated in the
manufacturer�s instructions. The total RNA was
quantified by a UV spectrophotometer and RNA
quality was evaluated by capillary electrophoresis
on an Agilent 2100 Bioanalyzer using the RNA
6000 Nano LabChip Kit.

RNA amplification and labeling

Targets of cRNA were amplified and fluorescently
labeled from 0.5 lg total RNA in each reaction
using the Agilent Low RNA Input Fluorescent
Linear Amplification kit following the instructions
in the user�s manual. For each sample pair, the
control samples were labeled with Cy3 and the
treated samples were labeled with Cy5. After
purification using Qiagen�s RNeasy mini-spin col-
umns, the quantification, quality and size distri-
bution of the labeled cRNA targets were then
determined by ultraviolet (UV) spectrophotometry
and RNA 6000 Nano LabChip Assay.

Microarray hybridization

Hybridization was performed following the Agi-
lent oligonucleotide microarray hybridization
user�s manual and Agilent in situ Hybridization
Kit Plus. Briefly, 2 lg of labeled cRNA per
channel was mixed with 50 ll 10 � control targets
and nuclease-free water to come up with a final
volume of 240 ll. Each sample tube was added
with 10 ll of 25 � fragmentation buffer, and was
incubated at 60 �C in a water bath for 30 min in
the dark. Afterward, the reaction was terminated
by the addition of 250 ll of 2 � hybridization
buffer. A volume of 500 ll of hybridization mix
was applied to Agilent�s Human 1A Oligonucleo-
tide Microarray which contains 20,173 (60 mer)
oligonucleotide probes spanning conserved exons
across the transcripts of 18,716 targeted full-length
genes, and hybridized in a hybridization rotation
oven at 60 �C for 17 h. The slides which were
disassembled in 6 � SSPE and 0.005% N-Lau-
roylsarcosine were washed with 6 � SSPE, 0.005%
N-Lauroylsarcosine for 1 min at room tempera-

ture, then with 0.06 � SSPE, 0.005% N-Lauroyl-
sarcosine for 1 min and with Stabilization and
Drying Solution for 30 s.

Data analysis and bioinformatics

The microarray chip was scanned using an Agilent
G2565BA Microarray Scanner System, and the
Agilent Feature Extraction software 7.5 used
defaults for all parameters including a parameter-
ized error model to compute the significance
(p-values) of log ratios. The image quantities of
interest produced by the image analysis methods
were the (R, G) fluorescence intensity pairs for
each gene on each array probe, where R = red for
Cy5 and G = green for Cy3. An �MA-plot� was
used to represent the normalized (R, G) data,
where M = log R/G and A = log�(R�G) [12,
13].

For the bioinformatics tools to search gene
ontology, we used the combination of databases to
gain information on gene name and symbol,
subcellular location, family and superfamily clas-
sification, chromosome map location, similar gene,
molecular function, biochemical function-related
protein and references. The gene search programs
were used the following sequential order of data-
bases: NCBI (http://www.ncbi.nlm.nih.gov) En-
sembl (http://www.ensembl.org) GeneCards
(http://www.genecards.org) and TIGR (http://
www.tigr.org). For the database search of porcine
gene matching, the TIGR Pig (Sus scrofa) Gene
Index (SsGI) database (http://www.tigr.org/tigr-
scripts/tgi/T_index.cgi?species=pig) supplemented
with NCBI and Swiss-Prot/TrEMBL database was
used for identifying the porcine homolog of
human gene. In addition, the category classifica-
tion of gene expression was done by in-house Bulk
Gene Search System for Java (BGSSJ) program
that is a searching system accomplished by open
database connectivity, UniGene database and
Gene Ontology knowledgebase, and is available
at http://www.servx8.sinica.edu.tw/bgss-cgi-bin/
gene.pl or http://www.bgssj.sourceforge.net. On
the other hand, the protein search program used
the Swiss-Prot/TrEMBL (http://www.expasy.ch/
sprot), Proteome (http://www.proteom.. com/da-
tabases/HumanPD/reports) and PubMed (http://
www.ncbi.nlm.nih.gov/PubMed). Moreover, the
combining pathway databases of BioCarta (http://
www.biocarta.com), KEGG (http://www. genome.
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ad.jp/kegg/pathways.html) and the PubMed liter-
ature were used to search the correlated signaling
pathways and mechanisms of renal response in
LLC-PK1 cells.

Real-time quantitative PCR

Specific oligonucleotide primer pairs were de-
signed using the analysis Beacon designer 4.00
(Premier Biosoft International) and were then used
for RT-qPCR. The sequences of the primers
obtained from TIGR Sus scrofaGene Index (SsCI)
(http://www.tigr.org) and Swiss-Prot/TrEMBL (-
http://www.expasy.ch/sprot) were: (1) ATP1B1
(TC221443, 106 bp): forward 5¢-AGGCGTAT-
GGTGAGAACATTGG-3¢ and reverse 5¢-GGCT-
AGTGGGAAAGAGCTTGTG-3¢; (2) H3F3A
(TC205667, 110 bp): forward 5¢-TCTGAAGTCC-
AGAGGGCTAAGC-3¢ and reverse 5¢-CTAG-
CAGCTTGAAAGGCGTTCC-3¢; (3) ITGB1
(TC220012, 134 bp): forward 5¢-GCTGGTGT-
GGTTGCTGGAATTG-3¢ and reverse 5¢-CC
CGTGTCCCATTTGGCATTC-3¢; (4) RHO
(TC234249, 197 bp): forward 5¢-CTGTGGTCC-
TTGGTGGTCCTG-3¢ and reverse 5¢-TCAATC-
CCGCACGAGCACTG-3¢. The specificity of each
primer pair was tested using a common reference
RNA (Stratagene) to perform RT-PCR reaction,
followed by DNA 500 chip run on Bioanalyzer 2100
(Agilent Technologies) to check the size of the PCR
product. Primer pairs of production predicted
product size and no other side products were chosen
to conduct the following SYBR reaction.

RT-qPCR was performed on the LightCycler
instrument 1.5 (Roche) using the LightCycler�

FastStart DNA MasterPLUS SYBR Green I kit
(Roche Applied Science). The LightCycler soft-
ware was used to calculate the threshold cycle
(Cp), defined as the fractional cycle number at
which the fluorescence reached the baseline and
the fold expression of the target gene relative to
b-actin in each sample.

Results

Gene expression analysis of ANP-stimulated
LLC-PK1 cells

The microarray results showed different fluores-
cence intensities between Cy3 (untreated LLC-

PK1 cells) and Cy5 (ANP-treated LLC-PK1 cells),
corresponding to the differential expression level
of thousands of genes, and represented the differ-
ent Cy3 and Cy5 signal intensities with a p value of
less than 0.01 (p<0.01) that were considered to be
significantly different (Figure 1). An analysis of
gene expression changes with human oligonucleo-
tide microarray revealed the total number of 807
differentially expressed genes in ANP-stimulated
LLC-PK1 cells, containing 483 up-regulated genes
and 324 down-regulated genes. In addition, we
used the bioinformatics tools combining NCBI,
Ensembl, GeneCards and TIGR database to
access the gene annotations and description. Due
to the human oligonucleotide microarray used, we
used the TIGR-SsGI database supplemented with
NCBI and Swiss-Prot/TrEMBL database to
search the porcine homolog of human genes and
obtained approximately 148 up-regulated genes
and 108 down-regulated genes. Then, we used the
in-house BGSSJ program to search the gene
ontology of the above gene numbers, which were
classified the gene category, according to cellular
component, molecular function and biological
process. The summary of the category classifica-
tion of differentially expressed genes in ANP-
stimulated LLC-PK1 cells is shown in Figure 2.
The total numbers of 129 up-regulated genes and
98 down-regulated genes were classified into each
category with different ratios. Meanwhile, the
remaining numbers of 19 up-regulated genes and
10 down-regulated genes could not be classified by
this program because they may be the new genes
and none of categorical information. Some of
genes could be classified into more than one
category, depending to their cellular component,
molecular function and biological process. The
expressed genes were found to be located in the
subcellular region rather than organelle, extracel-
lular region, protein complex and extracellular
matrix, respectively. It may indicate the signal
transduction pathway occurring from extracellular
region to intracellular region because some of
genes served as receptors and/or transporters and
have mediated the signaling genes to another
region. So, it is possible to be found in both
regions. Otherwise, they possessed the molecular
functions in different ratios of binding, catalytic
activity, signal transduction activity, transcription
regulator activity, structural molecule activity,
transporter activity, enzyme regulator activity,
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motor activity, translation regulator activity and
antioxidant activity. Moreover, the expressed
genes involved some biological processes, such as
physiological process, cellular process, regulation
of biological process, development and behavior,
leading to the understanding the related mecha-
nisms of renal protective system and other actions
of ANP. Thus, this category classification pro-
vided more useful information of gene ontology in
response to ANP stimulation. Furthermore we
suggest that all of the differentially expressed genes
may be regulated by various gene networks and
possess related molecular functions involving bio-
logical processes in the regulation of renal
response.

RT-qPCR validation of array analysis

The ANP-stimulated genes chosen for RT-qPCR
analysis were selected from a mean degree of
higher expression level with significant p<0.001.
The selected genes were validated by RT-qPCR
analysis to confirm the result of gene expression
level with microarray data and the result of gene
expression level of four expressed genes was agreed
with the DNA microarray expression data
(Table 1). There were Na+/K+ transporting AT-

Pase (ATP1B1) [14], H3 histone (H3F3A) [15],
integrin beta-1 subunit (ITGB1) [16] and rhodop-
sin (RHO) [17]. They were up-regulated genes in
ANP-stimulated LLC-PK1 cells and have been
found to have the correlation with the renal
protective system. In addition, the classification
of these genes by the BGSSJ program showed
multiple locations in cell component, multiple
functions in binding, catalytic activity, signal
transducer activity and transporter activity, and
multiple biological processes at the physiologic,
cellular, developmental and regulation levels
(Figure 3).

Correlation of differentially expressed genes with
ANP signaling pathways

Combining the pathway databases of BioCarta,
KEGG and the PubMed literatures, we built the
hypothetical model of ANP-signal transduction
pathways, in which the differentially expressed
genes of ATP1B1, H3F3A, ITGB1 and RHO are
correlated in this pathway by alleviating the
hypertrophy in ANP-stimulated LLC-PK1 cells
(Figure 4). Our hypothetical model suggests that
ANP from the outer membrane can pass
through the inner membrane via the NPR-A

Figure 1. M-A plot of microarray data representing the differentially expressed probes of ANP-stimulated LLC-PK1 cells. A repre-
sentative probe of comparative experiments between untreated mRNA labeled with Cy3 and ANP-treated mRNA labeled with
Cy5, where M is the common log ratio of two dyes and A is the average logarithmic fluorescence intensities of both channels. The
gene expression pattern shows approximately 842 significant differentially expressed probes (p<0.01). Blue + (middle) represents
any data point whose log ratio is not significantly different from 0; red + (upper) and green + (lower) represent data points
whose log ratios are greater or less than 0, respectively.



receptor, and interact with other associated genes
in many related pathways, such as guanylyl
cyclase (GCase), cyclic GMP, FAK, MAPK,
PKC/PKG, and Ras/Rac [18–22]. This leads to
the stimulation of ANP-responded genes encod-
ing proteins (ATP1B1, H3F3A, ITGB1, and
RHO). The signal transduction pathway is
closely related to biological processes which can
lead to changes in physiological and biological
functions. Thus, these up-regulated genes are
related to the regulatory mechanisms of renal
hypertrophy as well as other mechanisms, in
which these genes can potentially alleviate the
progression of renal failure.

Discussion

In this study, the effect of ANP on the gene
expression change in the renal system was carried
out in the LLC-PK1 cells from the pig epithelial
kidney cells because LLC-PK1 cells principally
exhibit the NPR-A receptor [10, 23] and the only
limitation to the use of the model is its rapid onset,
while the positive features of this pig model
include its ‘‘acceptance’’ or etiologic relevance to
clinical renal failure. It has a neurohumoral and
functional profile similar to most human disease
failures, with relatively low cost and simple prep-
aration, ability to reliably or reversibly manipulate
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the degree of failure with pacing rate, and a large
amount of published multi species [24]. Following
the microarray analysis, the human array was used
to analyze the gene expression in the porcine cells
with two main reasons. First, the porcine micro-
array is not much widely available and may have
the variability due to the new coming array.
Second, the cross-species hybridization between
human and porcine could generate highly repro-
ducible data of expressed genes and the same
number of genes could be expressed at higher
levels in the pig kidney as in the human kidney
[25–29]. Otherwise, the high relevance of cross-
species comparison of gene expression between
human and porcine tissue suggests that the pig
tissue is an ideal donor for kidney transplantation
to human recipients. Thus, this system approach
using the human array for gene expression analysis
in pigs is very useful and important to understand
the gene regulation in the porcine organs for
further therapeutic application, especially in kid-
ney transplantation. By these reasons, we used the
human microarray to investigate the effect of ANP
on the gene expression change in LLC-PK1 cells
that was able to correlate with the homologous
human genes and led to understanding the corre-
lated response of gene regulation in human renal
system. On the other hand, the single ANP
concentration and 24 h post-treatment condition
in LLC-PK1 cells were used to study the gene
expression level because this condition could
access the G1 phase of the cell cycle which might
be a critical period in the evolution of renal
hypertrophy [10].

After microarray analysis, we used RT-qPCR
to validate the gene expression changes and the
expression level of ANP-responsive genes agreed
with the DNA microarray data. Meanwhile, four
significantly expressed genes of ATP1B1, ITGB1,
H3F3A and RHO were found to be up-regulated in
ANP-stimulated LLC-PK1 cells and highly effec-
tive to the regulation of renal hypertrophy.
ATP1B1 encoding Na+, K+-transporting ATPase
beta-1 chain was one of the up-regulated genes in
the ANP-stimulated LLC-PK1 cells. The gene-
encoded protein, which belongs to the family of
Na+, K+, and H+, K+ ATPase beta chain
proteins and the subfamily of Na+, K+-ATPase,
is an integral membrane protein responsible for
establishing and maintaining the electrochemical
gradients of Na+ and K+ across the plasmaT
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membrane [30, 31]. In addition, ANP could directly
modulate primarily active sodium transport in the
proximal tubule, and this effect is mediated by the
activation of the NPR-A/guanylate cyclase/cGMP
pathway that involves reversible activation/deacti-
vation of renal tubular Na+, K+-ATPase [32, 33].
Thus, the up-regulated ATP1B1 in ANP-stimu-
lated LLC-PK1 cells can reduce Na+ resorption by
excreting Na+ outside the membrane, and thereby
leading to natriuresis. It is also related to the
downstream signaling pathways that can increase
muscle contraction and reduce the hypertrophy,
therefore ameliorating renal failure.

H3F3A encoding histone H3.3 or H3.3A
belongs to the replacement histone gene family.
It has several features that distinguish the H3F3A
gene from the main histone gene types [34, 35]. The
regulatory functions of the H3F3A gene and its
expression are involved in cell proliferation and
apoptosis, and could be a possible candidate gene
for the rippling muscle disease [35, 36]. Thus, we
suggest that the up-regulated H3F3A gene may be
a mediator in the cell signaling pathway that leads
to the decrease in hypertrophy.

ITGB1 encoding integrin beta-1 subunit was the
up-regulated gene in the ANP-stimulated LLC-
PK1 cells. Integrins were co-localized and associ-
ated with Na+, K+-ATPase, in which the close
proximity of ATPase ion pumps to chondrocyte
mechanoreceptor complexes could facilitate rapid

homeostatic responses to the ionic perturbations
brought about by the activation of mechanically
gated cation channels. Integrins efficiently regulate
the intracellular milieu of chondrocytes [37].
Otherwise, the biological function of integrins
was shown to mediate a variety of signaling
molecules including the activation of Na+/H+

antiporter [38], focal adhesion kinase (FAK) [39],
Src kinases [40], small G-proteins (Ras and Rho)
[41, 42], and ERK/JNK kinases [43, 44]. The up-
regulated ITG1B1 gene in the ANP-stimulated
LLC-PK1 cells could give the advantage in terms of
the promotion of ANP therapy of renal failure and
the stimulation of mediated cell adhesion and
recognition in a variety of processes including
hemostasis, immune response, motility and inva-
siveness, cell growth, and cell survival [45–47].

RHO encoding rhodopsin was the up-regulated
gene in the ANP-stimulated LLC-PK1 cells. In
general, rhodopsin acts as the dim-light photore-
ceptor of the rod cell and it mutations or differ-
entiation cause a blinding retinal degenerative
process, as known retinitis pigmentosa (RP), and
lead to a constitutive activation of the phototrans-
duction cascade in the absence of light [48–50].
RHO is a prototypical member of the superfamily
of G protein-coupled receptors (GPCRs) [51–53]
and served the molecular function in the regula-
tion of guanylyl cyclases (GCase) and signaling of
cyclic GMP by activating a cGMP to inhibit the
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Figure 3. Classification of four significantly expressed genes (ATP1B1, H3F3A, ITGB1, and RHO) in ANP-stimulated LLC-PK1
cells by using the in-house BGSSJ program.



specific PDE [54, 55]. Although the relationship of
up-regulated RHO gene in ANP-stimulated LLC-
PK1 cells and renal hypertrophy is not clear, the
correlated functions of RHO in the downstream
signaling pathways of GCase and cGMP may be
involved in the regulation of hypertrophic process.

Furthermore, it is interesting to note that the
biological functions of Na+, K+-ATPase trans-
porting beta 1-encoded ATPB1, integrin-encoded
ITGB1 and rhodopsin-encoded RHO involved in
the numbers of ANP signal transduction path-
ways, particularly at the region of the cell mem-
brane layers. Meanwhile, Na+, K+-ATPase
transporting beta 1-encoded ATPB1 and inte-
grin-encoded ITGB1 could induce the expression
of the downstream mitogen-activated protein
kinase (MAPK) signaling pathway [56]. Thus, we
believe that ANP can effectively stimulate the

signaling pathways via GCase, cGMP, GPK,
MAPK and Na+, K+-ATPase, which turn on
the expressed genes synthesizing related proteins
for biological actions of renal failure suppression
and other related actions (Figure 4). However, this
is the first hypothetical model on the signal
transduction pathway of ANP stimulation in
LLC-PK1 cells. This model is based upon our
finding of four significantly expressed genes from
microarray and RT-qPCR results which are linked
to ANP�s actions in correcting renal hypertrophy.
Moreover, the expressed genes may provide useful
information on ANP mechanism, and thus provide
better understanding of the gene expression level
in the regulation of renal hypertrophy. The
expressed genes may be used for further studies
regarding the diagnostics and therapeutics of renal
failure and other related diseases.
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In conclusion, we used the DNA microarray to
explore the global analysis of the gene expression
in ANP-stimulated LLC-PK1 cells. The classifica-
tion and validation of differentially expressed
genes led to an exploration of valuable data in
the ANP acting on the renal system. The gene lists
of differentially expressed genes may be useful in
the development of molecular diagnostic products
or for research comparison with other therapeu-
tics. In addition, four up-regulated genes served as
candidate markers in the renal tubular cells for
alleviation of renal failure progression, particu-
larly renal hypertrophy, as well as other related
effects. However, we will conduct further studies
on the effects of ANP on the biological and
molecular mechanisms of human renal tubular
kidney cells and also examine other biological
characterizations of ANP-responsive gene markers
in diagnostic and therapeutic applications.

Electronic supplementary material

The online version of this article (doi:
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